Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available August 22, 2026
-
Free, publicly-accessible full text available September 1, 2026
-
Abstract We prove that among all 1-periodic configurations $$\Gamma $$ of points on the real line $$\mathbb{R}$$ the quantities $$\min _{x \in \mathbb{R}} \sum _{\gamma \in \Gamma } e^{- \pi \alpha (x - \gamma )^{2}}$$ and $$\max _{x \in \mathbb{R}} \sum _{\gamma \in \Gamma } e^{- \pi \alpha (x - \gamma )^{2}}$$ are maximized and minimized, respectively, if and only if the points are equispaced and whenever the number of points $$n$$ per period is sufficiently large (depending on $$\alpha $$). This solves the polarization problem for periodic configurations with a Gaussian weight on $$\mathbb{R}$$ for large $$n$$. The first result is shown using Fourier series. The second result follows from the work of Cohn and Kumar on universal optimality and holds for all $$n$$ (independent of $$\alpha $$).more » « less
An official website of the United States government
